
2.1 Calculus
2.1.1 The differentiation rules
Let f, g, h be differentiable and suppose
u = g(x) and v = h(x)
The constant rules
If y = cu = cg(x) where c Î
R then
dy/dx = c du/dx = cg'(x)
The sum rule
If y = u + v = g(x) + h(x) then
dy/dx = du/dx + dv/dx = g'(x) + h'(x)
The product rule / Produktregelen
if y = u * v = g(x) h(x) then
dy/dx = du/dx * v + u * dv/dx = g'(x) h(x) + g(x) h'(x)
The quotient rule
If y = u/v = g(x) / h(x) where h(x) != 0 then
dy/dx = [ g'(x) h(x) - g(x) h'(x) ] / [h(x)]^2
The chain rule / Kjerneregelen
If y = f(u) = f(g(x)) and u = g(x) then
dy/dx = dy/du * du/dx = f''(g(x))*g'(x)
2.1.1.1 Some special derivatives
(ln x)' = 1/x
(e^x)' = e^x
(cos x)' = -sin x
(sin x)' = cos x
(tan x) ' = sec^2 x = 1 / (cos^2 x)
(arctan x)' = 1 / (1 + x^2)
(arcsin)' = 1 / sqrt( 1 - x^2 )
2.1.2 The laws of logarithms
x>0, y>0
log x + log y = log(xy)
log x - log y = log (x/y)
p log x = log (x^p)
2.1.3 Newton's method
Let [a, b] be an interval containing just one solution of the equation
f(x) = 0, where f ' is bounded, differentiable and positive on [a, b]
and f '' is bounded and positive on [a, b]. The, for any x1Î
[a, b], with f(x1) > 0, the sequence x1, g(x1), g(g(x1)),... converges
to the solution of f(x) = 0 in [a, b], where
g(x) = x - [ f(x) / f '(x) ]
Here is a bit of code witch performs Newton's method:
(from Mørken)
double x0, xp, x, e;
int n;
xp = x0; e = maxint; n = 1;
while (e>eps & n<=nmax) {
x = xp - f(xp)/Df(xp);
e = abs(x-xp);
n = n + 1;
}
Maths
Home

P
a b
c d
e f
g h
l m
p q
³ £
Î
Ï Ç
È É
Ê Ë
Ì Í
® ±
Û Ü
Ý Þ
ß å
ò ¥ |